Skip to content

Prometheus/OpenMetrics V1


Prometheus is an open source monitoring system for timeseries metric data. Many Datadog integrations collect metrics based on Prometheus exported data sets.

Prometheus-based integrations use the OpenMetrics exposition format to collect metrics.

Interface

All functionality is exposed by the OpenMetricsBaseCheck and OpenMetricsScraperMixin classes.

datadog_checks.base.checks.openmetrics.base_check.OpenMetricsBaseCheck

OpenMetricsBaseCheck is a class that helps scrape endpoints that emit Prometheus metrics only with YAML configurations.

Minimal example configuration:

instances:
- prometheus_url: http://example.com/endpoint
    namespace: "foobar"
    metrics:
    - bar
    - foo

Agent 6 signature:

OpenMetricsBaseCheck(name, init_config, instances, default_instances=None, default_namespace=None)
Source code in datadog_checks_base/datadog_checks/base/checks/openmetrics/base_check.py
class OpenMetricsBaseCheck(OpenMetricsScraperMixin, AgentCheck):
    """
    OpenMetricsBaseCheck is a class that helps scrape endpoints that emit Prometheus metrics only
    with YAML configurations.

    Minimal example configuration:

        instances:
        - prometheus_url: http://example.com/endpoint
            namespace: "foobar"
            metrics:
            - bar
            - foo

    Agent 6 signature:

        OpenMetricsBaseCheck(name, init_config, instances, default_instances=None, default_namespace=None)

    """

    DEFAULT_METRIC_LIMIT = 2000

    HTTP_CONFIG_REMAPPER = {
        'ssl_verify': {'name': 'tls_verify'},
        'ssl_cert': {'name': 'tls_cert'},
        'ssl_private_key': {'name': 'tls_private_key'},
        'ssl_ca_cert': {'name': 'tls_ca_cert'},
        'prometheus_timeout': {'name': 'timeout'},
        'request_size': {'name': 'request_size', 'default': 10},
    }

    # Allow tracing for openmetrics integrations
    def __init_subclass__(cls, **kwargs):
        super().__init_subclass__(**kwargs)
        return traced_class(cls)

    def __init__(self, *args, **kwargs):
        """
        The base class for any Prometheus-based integration.
        """
        args = list(args)
        default_instances = kwargs.pop('default_instances', None) or {}
        default_namespace = kwargs.pop('default_namespace', None)

        legacy_kwargs_in_args = args[4:]
        del args[4:]

        if len(legacy_kwargs_in_args) > 0:
            default_instances = legacy_kwargs_in_args[0] or {}
        if len(legacy_kwargs_in_args) > 1:
            default_namespace = legacy_kwargs_in_args[1]

        super(OpenMetricsBaseCheck, self).__init__(*args, **kwargs)
        self.config_map = {}
        self._http_handlers = {}
        self.default_instances = default_instances
        self.default_namespace = default_namespace

        # pre-generate the scraper configurations

        if 'instances' in kwargs:
            instances = kwargs['instances']
        elif len(args) == 4:
            # instances from agent 5 signature
            instances = args[3]
        elif isinstance(args[2], (tuple, list)):
            # instances from agent 6 signature
            instances = args[2]
        else:
            instances = None

        if instances is not None:
            for instance in instances:
                possible_urls = instance.get('possible_prometheus_urls')
                if possible_urls is not None:
                    for url in possible_urls:
                        try:
                            new_instance = deepcopy(instance)
                            new_instance.update({'prometheus_url': url})
                            scraper_config = self.get_scraper_config(new_instance)
                            response = self.send_request(url, scraper_config)
                            response.raise_for_status()
                            instance['prometheus_url'] = url
                            self.get_scraper_config(instance)
                            break
                        except (IOError, requests.HTTPError, requests.exceptions.SSLError) as e:
                            self.log.info("Couldn't connect to %s: %s, trying next possible URL.", url, str(e))
                    else:
                        raise CheckException(
                            "The agent could not connect to any of the following URLs: %s." % possible_urls
                        )
                else:
                    self.get_scraper_config(instance)

    def check(self, instance):
        # Get the configuration for this specific instance
        scraper_config = self.get_scraper_config(instance)

        # We should be specifying metrics for checks that are vanilla OpenMetricsBaseCheck-based
        if not scraper_config['metrics_mapper']:
            raise CheckException(
                "You have to collect at least one metric from the endpoint: {}".format(scraper_config['prometheus_url'])
            )

        self.process(scraper_config)

    def get_scraper_config(self, instance):
        """
        Validates the instance configuration and creates a scraper configuration for a new instance.
        If the endpoint already has a corresponding configuration, return the cached configuration.
        """
        endpoint = instance.get('prometheus_url')

        if endpoint is None:
            raise CheckException("Unable to find prometheus URL in config file.")

        # If we've already created the corresponding scraper configuration, return it
        if endpoint in self.config_map:
            return self.config_map[endpoint]

        # Otherwise, we create the scraper configuration
        config = self.create_scraper_configuration(instance)

        # Add this configuration to the config_map
        self.config_map[endpoint] = config

        return config

    def _finalize_tags_to_submit(self, _tags, metric_name, val, metric, custom_tags=None, hostname=None):
        """
        Format the finalized tags
        This is generally a noop, but it can be used to change the tags before sending metrics
        """
        return _tags

    def _filter_metric(self, metric, scraper_config):
        """
        Used to filter metrics at the beginning of the processing, by default no metric is filtered
        """
        return False
__init__(*args, **kwargs)

The base class for any Prometheus-based integration.

Source code in datadog_checks_base/datadog_checks/base/checks/openmetrics/base_check.py
def __init__(self, *args, **kwargs):
    """
    The base class for any Prometheus-based integration.
    """
    args = list(args)
    default_instances = kwargs.pop('default_instances', None) or {}
    default_namespace = kwargs.pop('default_namespace', None)

    legacy_kwargs_in_args = args[4:]
    del args[4:]

    if len(legacy_kwargs_in_args) > 0:
        default_instances = legacy_kwargs_in_args[0] or {}
    if len(legacy_kwargs_in_args) > 1:
        default_namespace = legacy_kwargs_in_args[1]

    super(OpenMetricsBaseCheck, self).__init__(*args, **kwargs)
    self.config_map = {}
    self._http_handlers = {}
    self.default_instances = default_instances
    self.default_namespace = default_namespace

    # pre-generate the scraper configurations

    if 'instances' in kwargs:
        instances = kwargs['instances']
    elif len(args) == 4:
        # instances from agent 5 signature
        instances = args[3]
    elif isinstance(args[2], (tuple, list)):
        # instances from agent 6 signature
        instances = args[2]
    else:
        instances = None

    if instances is not None:
        for instance in instances:
            possible_urls = instance.get('possible_prometheus_urls')
            if possible_urls is not None:
                for url in possible_urls:
                    try:
                        new_instance = deepcopy(instance)
                        new_instance.update({'prometheus_url': url})
                        scraper_config = self.get_scraper_config(new_instance)
                        response = self.send_request(url, scraper_config)
                        response.raise_for_status()
                        instance['prometheus_url'] = url
                        self.get_scraper_config(instance)
                        break
                    except (IOError, requests.HTTPError, requests.exceptions.SSLError) as e:
                        self.log.info("Couldn't connect to %s: %s, trying next possible URL.", url, str(e))
                else:
                    raise CheckException(
                        "The agent could not connect to any of the following URLs: %s." % possible_urls
                    )
            else:
                self.get_scraper_config(instance)
check(instance)
Source code in datadog_checks_base/datadog_checks/base/checks/openmetrics/base_check.py
def check(self, instance):
    # Get the configuration for this specific instance
    scraper_config = self.get_scraper_config(instance)

    # We should be specifying metrics for checks that are vanilla OpenMetricsBaseCheck-based
    if not scraper_config['metrics_mapper']:
        raise CheckException(
            "You have to collect at least one metric from the endpoint: {}".format(scraper_config['prometheus_url'])
        )

    self.process(scraper_config)
get_scraper_config(instance)

Validates the instance configuration and creates a scraper configuration for a new instance. If the endpoint already has a corresponding configuration, return the cached configuration.

Source code in datadog_checks_base/datadog_checks/base/checks/openmetrics/base_check.py
def get_scraper_config(self, instance):
    """
    Validates the instance configuration and creates a scraper configuration for a new instance.
    If the endpoint already has a corresponding configuration, return the cached configuration.
    """
    endpoint = instance.get('prometheus_url')

    if endpoint is None:
        raise CheckException("Unable to find prometheus URL in config file.")

    # If we've already created the corresponding scraper configuration, return it
    if endpoint in self.config_map:
        return self.config_map[endpoint]

    # Otherwise, we create the scraper configuration
    config = self.create_scraper_configuration(instance)

    # Add this configuration to the config_map
    self.config_map[endpoint] = config

    return config

datadog_checks.base.checks.openmetrics.mixins.OpenMetricsScraperMixin

Source code in datadog_checks_base/datadog_checks/base/checks/openmetrics/mixins.py
class OpenMetricsScraperMixin(object):
    # pylint: disable=E1101
    # This class is not supposed to be used by itself, it provides scraping behavior but
    # need to be within a check in the end

    # indexes in the sample tuple of core.Metric
    SAMPLE_NAME = 0
    SAMPLE_LABELS = 1
    SAMPLE_VALUE = 2

    MICROS_IN_S = 1000000

    MINUS_INF = float("-inf")

    TELEMETRY_GAUGE_MESSAGE_SIZE = "payload.size"
    TELEMETRY_COUNTER_METRICS_BLACKLIST_COUNT = "metrics.blacklist.count"
    TELEMETRY_COUNTER_METRICS_INPUT_COUNT = "metrics.input.count"
    TELEMETRY_COUNTER_METRICS_IGNORE_COUNT = "metrics.ignored.count"
    TELEMETRY_COUNTER_METRICS_PROCESS_COUNT = "metrics.processed.count"

    METRIC_TYPES = ['counter', 'gauge', 'summary', 'histogram']

    KUBERNETES_TOKEN_PATH = '/var/run/secrets/kubernetes.io/serviceaccount/token'
    METRICS_WITH_COUNTERS = {"counter", "histogram", "summary"}

    def __init__(self, *args, **kwargs):
        # Initialize AgentCheck's base class
        super(OpenMetricsScraperMixin, self).__init__(*args, **kwargs)

    def create_scraper_configuration(self, instance=None):
        """
        Creates a scraper configuration.

        If instance does not specify a value for a configuration option, the value will default to the `init_config`.
        Otherwise, the `default_instance` value will be used.

        A default mixin configuration will be returned if there is no instance.
        """
        if 'openmetrics_endpoint' in instance:
            raise CheckException('The setting `openmetrics_endpoint` is only available for Agent version 7 or later')

        # We can choose to create a default mixin configuration for an empty instance
        if instance is None:
            instance = {}

        # Supports new configuration options
        config = copy.deepcopy(instance)

        # Set the endpoint
        endpoint = instance.get('prometheus_url')
        if instance and endpoint is None:
            raise CheckException("You have to define a prometheus_url for each prometheus instance")

        # Set the bearer token authorization to customer value, then get the bearer token
        self.update_prometheus_url(instance, config, endpoint)

        # `NAMESPACE` is the prefix metrics will have. Need to be hardcoded in the
        # child check class.
        namespace = instance.get('namespace')
        # Check if we have a namespace
        if instance and namespace is None:
            if self.default_namespace is None:
                raise CheckException("You have to define a namespace for each prometheus check")
            namespace = self.default_namespace

        config['namespace'] = namespace

        # Retrieve potential default instance settings for the namespace
        default_instance = self.default_instances.get(namespace, {})

        def _get_setting(name, default):
            return instance.get(name, default_instance.get(name, default))

        # `metrics_mapper` is a dictionary where the keys are the metrics to capture
        # and the values are the corresponding metrics names to have in datadog.
        # Note: it is empty in the parent class but will need to be
        # overloaded/hardcoded in the final check not to be counted as custom metric.

        # Metrics are preprocessed if no mapping
        metrics_mapper = {}
        # We merge list and dictionaries from optional defaults & instance settings
        metrics = default_instance.get('metrics', []) + instance.get('metrics', [])
        for metric in metrics:
            if isinstance(metric, str):
                metrics_mapper[metric] = metric
            else:
                metrics_mapper.update(metric)

        config['metrics_mapper'] = metrics_mapper

        # `_wildcards_re` is a Pattern object used to match metric wildcards
        config['_wildcards_re'] = None

        wildcards = set()
        for metric in config['metrics_mapper']:
            if "*" in metric:
                wildcards.add(translate(metric))

        if wildcards:
            config['_wildcards_re'] = compile('|'.join(wildcards))

        # `prometheus_metrics_prefix` allows to specify a prefix that all
        # prometheus metrics should have. This can be used when the prometheus
        # endpoint we are scrapping allows to add a custom prefix to it's
        # metrics.
        config['prometheus_metrics_prefix'] = instance.get(
            'prometheus_metrics_prefix', default_instance.get('prometheus_metrics_prefix', '')
        )

        # `label_joins` holds the configuration for extracting 1:1 labels from
        # a target metric to all metric matching the label, example:
        # self.label_joins = {
        #     'kube_pod_info': {
        #         'labels_to_match': ['pod'],
        #         'labels_to_get': ['node', 'host_ip']
        #     }
        # }
        config['label_joins'] = default_instance.get('label_joins', {})
        config['label_joins'].update(instance.get('label_joins', {}))

        # `_label_mapping` holds the additionals label info to add for a specific
        # label value, example:
        # self._label_mapping = {
        #     'pod': {
        #         'dd-agent-9s1l1': {
        #             "node": "yolo",
        #             "host_ip": "yey"
        #         }
        #     }
        # }
        config['_label_mapping'] = {}

        # `_active_label_mapping` holds a dictionary of label values found during the run
        # to cleanup the label_mapping of unused values, example:
        # self._active_label_mapping = {
        #     'pod': {
        #         'dd-agent-9s1l1': True
        #     }
        # }
        config['_active_label_mapping'] = {}

        # `_watched_labels` holds the sets of labels to watch for enrichment
        config['_watched_labels'] = {}

        config['_dry_run'] = True

        # Some metrics are ignored because they are duplicates or introduce a
        # very high cardinality. Metrics included in this list will be silently
        # skipped without a 'Unable to handle metric' debug line in the logs
        config['ignore_metrics'] = instance.get('ignore_metrics', default_instance.get('ignore_metrics', []))
        config['_ignored_metrics'] = set()

        # `_ignored_re` is a Pattern object used to match ignored metric patterns
        config['_ignored_re'] = None
        ignored_patterns = set()

        # Separate ignored metric names and ignored patterns in different sets for faster lookup later
        for metric in config['ignore_metrics']:
            if '*' in metric:
                ignored_patterns.add(translate(metric))
            else:
                config['_ignored_metrics'].add(metric)

        if ignored_patterns:
            config['_ignored_re'] = compile('|'.join(ignored_patterns))

        # Ignore metrics based on label keys or specific label values
        config['ignore_metrics_by_labels'] = instance.get(
            'ignore_metrics_by_labels', default_instance.get('ignore_metrics_by_labels', {})
        )

        # If you want to send the buckets as tagged values when dealing with histograms,
        # set send_histograms_buckets to True, set to False otherwise.
        config['send_histograms_buckets'] = is_affirmative(
            instance.get('send_histograms_buckets', default_instance.get('send_histograms_buckets', True))
        )

        # If you want the bucket to be non cumulative and to come with upper/lower bound tags
        # set non_cumulative_buckets to True, enabled when distribution metrics are enabled.
        config['non_cumulative_buckets'] = is_affirmative(
            instance.get('non_cumulative_buckets', default_instance.get('non_cumulative_buckets', False))
        )

        # Send histograms as datadog distribution metrics
        config['send_distribution_buckets'] = is_affirmative(
            instance.get('send_distribution_buckets', default_instance.get('send_distribution_buckets', False))
        )

        # Non cumulative buckets are mandatory for distribution metrics
        if config['send_distribution_buckets'] is True:
            config['non_cumulative_buckets'] = True

        # If you want to send `counter` metrics as monotonic counts, set this value to True.
        # Set to False if you want to instead send those metrics as `gauge`.
        config['send_monotonic_counter'] = is_affirmative(
            instance.get('send_monotonic_counter', default_instance.get('send_monotonic_counter', True))
        )

        # If you want `counter` metrics to be submitted as both gauges and monotonic counts. Set this value to True.
        config['send_monotonic_with_gauge'] = is_affirmative(
            instance.get('send_monotonic_with_gauge', default_instance.get('send_monotonic_with_gauge', False))
        )

        config['send_distribution_counts_as_monotonic'] = is_affirmative(
            instance.get(
                'send_distribution_counts_as_monotonic',
                default_instance.get('send_distribution_counts_as_monotonic', False),
            )
        )

        config['send_distribution_sums_as_monotonic'] = is_affirmative(
            instance.get(
                'send_distribution_sums_as_monotonic',
                default_instance.get('send_distribution_sums_as_monotonic', False),
            )
        )

        # If the `labels_mapper` dictionary is provided, the metrics labels names
        # in the `labels_mapper` will use the corresponding value as tag name
        # when sending the gauges.
        config['labels_mapper'] = default_instance.get('labels_mapper', {})
        config['labels_mapper'].update(instance.get('labels_mapper', {}))
        # Rename bucket "le" label to "upper_bound"
        config['labels_mapper']['le'] = 'upper_bound'

        # `exclude_labels` is an array of label names to exclude. Those labels
        # will just not be added as tags when submitting the metric.
        config['exclude_labels'] = default_instance.get('exclude_labels', []) + instance.get('exclude_labels', [])

        # `include_labels` is an array of label names to include. If these labels are not in
        # the `exclude_labels` list, then they are added as tags when submitting the metric.
        config['include_labels'] = default_instance.get('include_labels', []) + instance.get('include_labels', [])

        # `type_overrides` is a dictionary where the keys are prometheus metric names
        # and the values are a metric type (name as string) to use instead of the one
        # listed in the payload. It can be used to force a type on untyped metrics.
        # Note: it is empty in the parent class but will need to be
        # overloaded/hardcoded in the final check not to be counted as custom metric.
        config['type_overrides'] = default_instance.get('type_overrides', {})
        config['type_overrides'].update(instance.get('type_overrides', {}))

        # `_type_override_patterns` is a dictionary where we store Pattern objects
        # that match metric names as keys, and their corresponding metric type overrides as values.
        config['_type_override_patterns'] = {}

        with_wildcards = set()
        for metric, type in config['type_overrides'].items():
            if '*' in metric:
                config['_type_override_patterns'][compile(translate(metric))] = type
                with_wildcards.add(metric)

        # cleanup metric names with wildcards from the 'type_overrides' dict
        for metric in with_wildcards:
            del config['type_overrides'][metric]

        # Some metrics are retrieved from different hosts and often
        # a label can hold this information, this transfers it to the hostname
        config['label_to_hostname'] = instance.get('label_to_hostname', default_instance.get('label_to_hostname', None))

        # In combination to label_as_hostname, allows to add a common suffix to the hostnames
        # submitted. This can be used for instance to discriminate hosts between clusters.
        config['label_to_hostname_suffix'] = instance.get(
            'label_to_hostname_suffix', default_instance.get('label_to_hostname_suffix', None)
        )

        # Add a 'health' service check for the prometheus endpoint
        config['health_service_check'] = is_affirmative(
            instance.get('health_service_check', default_instance.get('health_service_check', True))
        )

        # Can either be only the path to the certificate and thus you should specify the private key
        # or it can be the path to a file containing both the certificate & the private key
        config['ssl_cert'] = instance.get('ssl_cert', default_instance.get('ssl_cert', None))

        # Needed if the certificate does not include the private key
        #
        # /!\ The private key to your local certificate must be unencrypted.
        # Currently, Requests does not support using encrypted keys.
        config['ssl_private_key'] = instance.get('ssl_private_key', default_instance.get('ssl_private_key', None))

        # The path to the trusted CA used for generating custom certificates
        config['ssl_ca_cert'] = instance.get('ssl_ca_cert', default_instance.get('ssl_ca_cert', None))

        # Whether or not to validate SSL certificates
        config['ssl_verify'] = is_affirmative(instance.get('ssl_verify', default_instance.get('ssl_verify', True)))

        # Extra http headers to be sent when polling endpoint
        config['extra_headers'] = default_instance.get('extra_headers', {})
        config['extra_headers'].update(instance.get('extra_headers', {}))

        # Timeout used during the network request
        config['prometheus_timeout'] = instance.get(
            'prometheus_timeout', default_instance.get('prometheus_timeout', 10)
        )

        # Authentication used when polling endpoint
        config['username'] = instance.get('username', default_instance.get('username', None))
        config['password'] = instance.get('password', default_instance.get('password', None))

        # Custom tags that will be sent with each metric
        config['custom_tags'] = instance.get('tags', [])

        # Some tags can be ignored to reduce the cardinality.
        # This can be useful for cost optimization in containerized environments
        # when the openmetrics check is configured to collect custom metrics.
        # Even when the Agent's Tagger is configured to add low-cardinality tags only,
        # some tags can still generate unwanted metric contexts (e.g pod annotations as tags).
        ignore_tags = instance.get('ignore_tags', default_instance.get('ignore_tags', []))
        if ignore_tags:
            ignored_tags_re = compile('|'.join(set(ignore_tags)))
            config['custom_tags'] = [tag for tag in config['custom_tags'] if not ignored_tags_re.search(tag)]

        # Additional tags to be sent with each metric
        config['_metric_tags'] = []

        # List of strings to filter the input text payload on. If any line contains
        # one of these strings, it will be filtered out before being parsed.
        # INTERNAL FEATURE, might be removed in future versions
        config['_text_filter_blacklist'] = []

        # Refresh the bearer token every 60 seconds by default.
        # Ref https://github.com/DataDog/datadog-agent/pull/11686
        config['bearer_token_refresh_interval'] = instance.get(
            'bearer_token_refresh_interval', default_instance.get('bearer_token_refresh_interval', 60)
        )

        config['telemetry'] = is_affirmative(instance.get('telemetry', default_instance.get('telemetry', False)))

        # The metric name services use to indicate build information
        config['metadata_metric_name'] = instance.get(
            'metadata_metric_name', default_instance.get('metadata_metric_name')
        )

        # Map of metadata key names to label names
        config['metadata_label_map'] = instance.get(
            'metadata_label_map', default_instance.get('metadata_label_map', {})
        )

        config['_default_metric_transformers'] = {}
        if config['metadata_metric_name'] and config['metadata_label_map']:
            config['_default_metric_transformers'][config['metadata_metric_name']] = self.transform_metadata

        # Whether or not to enable flushing of the first value of monotonic counts
        config['_flush_first_value'] = False

        # Whether to use process_start_time_seconds to decide if counter-like values should  be flushed
        # on first scrape.
        config['use_process_start_time'] = is_affirmative(_get_setting('use_process_start_time', False))

        return config

    def get_http_handler(self, scraper_config):
        """
        Get http handler for a specific scraper config.
        The http handler is cached using `prometheus_url` as key.
        The http handler doesn't use the cache if a bearer token is used to allow refreshing it.
        """
        prometheus_url = scraper_config['prometheus_url']
        bearer_token = scraper_config['_bearer_token']
        if prometheus_url in self._http_handlers and bearer_token is None:
            return self._http_handlers[prometheus_url]

        # TODO: Deprecate this behavior in Agent 8
        if scraper_config['ssl_ca_cert'] is False:
            scraper_config['ssl_verify'] = False

        # TODO: Deprecate this behavior in Agent 8
        if scraper_config['ssl_verify'] is False:
            scraper_config.setdefault('tls_ignore_warning', True)

        http_handler = self._http_handlers[prometheus_url] = RequestsWrapper(
            scraper_config, self.init_config, self.HTTP_CONFIG_REMAPPER, self.log
        )

        headers = http_handler.options['headers']

        bearer_token = scraper_config['_bearer_token']
        if bearer_token is not None:
            headers['Authorization'] = 'Bearer {}'.format(bearer_token)

        # TODO: Determine if we really need this
        headers.setdefault('accept-encoding', 'gzip')

        # Explicitly set the content type we accept
        headers.setdefault('accept', 'text/plain')

        return http_handler

    def reset_http_config(self):
        """
        You may need to use this when configuration is determined dynamically during every
        check run, such as when polling an external resource like the Kubelet.
        """
        self._http_handlers.clear()

    def update_prometheus_url(self, instance, config, endpoint):
        if not endpoint:
            return

        config['prometheus_url'] = endpoint
        # Whether or not to use the service account bearer token for authentication.
        # Can be explicitly set to true or false to send or not the bearer token.
        # If set to the `tls_only` value, the bearer token will be sent only to https endpoints.
        # If 'bearer_token_path' is not set, we use /var/run/secrets/kubernetes.io/serviceaccount/token
        # as a default path to get the token.
        namespace = instance.get('namespace')
        default_instance = self.default_instances.get(namespace, {})
        bearer_token_auth = instance.get('bearer_token_auth', default_instance.get('bearer_token_auth', False))
        if bearer_token_auth == 'tls_only':
            config['bearer_token_auth'] = config['prometheus_url'].startswith("https://")
        else:
            config['bearer_token_auth'] = is_affirmative(bearer_token_auth)

        # Can be used to get a service account bearer token from files
        # other than /var/run/secrets/kubernetes.io/serviceaccount/token
        # 'bearer_token_auth' should be enabled.
        config['bearer_token_path'] = instance.get('bearer_token_path', default_instance.get('bearer_token_path', None))

        # The service account bearer token to be used for authentication
        config['_bearer_token'] = self._get_bearer_token(config['bearer_token_auth'], config['bearer_token_path'])
        config['_bearer_token_last_refresh'] = time.time()

    def parse_metric_family(self, response, scraper_config):
        """
        Parse the MetricFamily from a valid `requests.Response` object to provide a MetricFamily object.
        The text format uses iter_lines() generator.
        """
        if response.encoding is None:
            response.encoding = 'utf-8'
        input_gen = response.iter_lines(decode_unicode=True)
        if scraper_config['_text_filter_blacklist']:
            input_gen = self._text_filter_input(input_gen, scraper_config)

        for metric in text_fd_to_metric_families(input_gen):
            self._send_telemetry_counter(
                self.TELEMETRY_COUNTER_METRICS_INPUT_COUNT, len(metric.samples), scraper_config
            )
            type_override = scraper_config['type_overrides'].get(metric.name)
            if type_override:
                metric.type = type_override
            elif scraper_config['_type_override_patterns']:
                for pattern, new_type in scraper_config['_type_override_patterns'].items():
                    if pattern.search(metric.name):
                        metric.type = new_type
                        break
            if metric.type not in self.METRIC_TYPES:
                continue
            metric.name = self._remove_metric_prefix(metric.name, scraper_config)
            yield metric

    def _text_filter_input(self, input_gen, scraper_config):
        """
        Filters out the text input line by line to avoid parsing and processing
        metrics we know we don't want to process. This only works on `text/plain`
        payloads, and is an INTERNAL FEATURE implemented for the kubelet check
        :param input_get: line generator
        :output: generator of filtered lines
        """
        for line in input_gen:
            for item in scraper_config['_text_filter_blacklist']:
                if item in line:
                    self._send_telemetry_counter(self.TELEMETRY_COUNTER_METRICS_BLACKLIST_COUNT, 1, scraper_config)
                    break
            else:
                # No blacklist matches, passing the line through
                yield line

    def _remove_metric_prefix(self, metric, scraper_config):
        prometheus_metrics_prefix = scraper_config['prometheus_metrics_prefix']
        return metric[len(prometheus_metrics_prefix) :] if metric.startswith(prometheus_metrics_prefix) else metric

    def scrape_metrics(self, scraper_config):
        """
        Poll the data from Prometheus and return the metrics as a generator.
        """
        response = self.poll(scraper_config)
        if scraper_config['telemetry']:
            if 'content-length' in response.headers:
                content_len = int(response.headers['content-length'])
            else:
                content_len = len(response.content)
            self._send_telemetry_gauge(self.TELEMETRY_GAUGE_MESSAGE_SIZE, content_len, scraper_config)
        try:
            # no dry run if no label joins
            if not scraper_config['label_joins']:
                scraper_config['_dry_run'] = False
            elif not scraper_config['_watched_labels']:
                watched = scraper_config['_watched_labels']
                watched['sets'] = {}
                watched['keys'] = {}
                watched['singles'] = set()
                for key, val in scraper_config['label_joins'].items():
                    labels = []
                    if 'labels_to_match' in val:
                        labels = val['labels_to_match']
                    elif 'label_to_match' in val:
                        self.log.warning("`label_to_match` is being deprecated, please use `labels_to_match`")
                        if isinstance(val['label_to_match'], list):
                            labels = val['label_to_match']
                        else:
                            labels = [val['label_to_match']]

                    if labels:
                        s = frozenset(labels)
                        watched['sets'][key] = s
                        watched['keys'][key] = ','.join(s)
                        if len(labels) == 1:
                            watched['singles'].add(labels[0])

            for metric in self.parse_metric_family(response, scraper_config):
                yield metric

            # Set dry run off
            scraper_config['_dry_run'] = False
            # Garbage collect unused mapping and reset active labels
            for metric, mapping in scraper_config['_label_mapping'].items():
                for key in list(mapping):
                    if (
                        metric in scraper_config['_active_label_mapping']
                        and key not in scraper_config['_active_label_mapping'][metric]
                    ):
                        del scraper_config['_label_mapping'][metric][key]
            scraper_config['_active_label_mapping'] = {}
        finally:
            response.close()

    def process(self, scraper_config, metric_transformers=None):
        """
        Polls the data from Prometheus and submits them as Datadog metrics.
        `endpoint` is the metrics endpoint to use to poll metrics from Prometheus

        Note that if the instance has a `tags` attribute, it will be pushed
        automatically as additional custom tags and added to the metrics
        """

        transformers = scraper_config['_default_metric_transformers'].copy()
        if metric_transformers:
            transformers.update(metric_transformers)

        counter_buffer = []
        agent_start_time = None
        process_start_time = None
        if not scraper_config['_flush_first_value'] and scraper_config['use_process_start_time']:
            agent_start_time = datadog_agent.get_process_start_time()

        if scraper_config['bearer_token_auth']:
            self._refresh_bearer_token(scraper_config)

        for metric in self.scrape_metrics(scraper_config):
            if agent_start_time is not None:
                if metric.name == 'process_start_time_seconds' and metric.samples:
                    min_metric_value = min(s[self.SAMPLE_VALUE] for s in metric.samples)
                    if process_start_time is None or min_metric_value < process_start_time:
                        process_start_time = min_metric_value
                if metric.type in self.METRICS_WITH_COUNTERS:
                    counter_buffer.append(metric)
                    continue

            self.process_metric(metric, scraper_config, metric_transformers=transformers)

        if agent_start_time and process_start_time and agent_start_time < process_start_time:
            # If agent was started before the process, we assume counters were started recently from zero,
            # and thus we can compute the rates.
            scraper_config['_flush_first_value'] = True

        for metric in counter_buffer:
            self.process_metric(metric, scraper_config, metric_transformers=transformers)

        scraper_config['_flush_first_value'] = True

    def transform_metadata(self, metric, scraper_config):
        labels = metric.samples[0][self.SAMPLE_LABELS]
        for metadata_name, label_name in scraper_config['metadata_label_map'].items():
            if label_name in labels:
                self.set_metadata(metadata_name, labels[label_name])

    def _metric_name_with_namespace(self, metric_name, scraper_config):
        namespace = scraper_config['namespace']
        if not namespace:
            return metric_name
        return '{}.{}'.format(namespace, metric_name)

    def _telemetry_metric_name_with_namespace(self, metric_name, scraper_config):
        namespace = scraper_config['namespace']
        if not namespace:
            return '{}.{}'.format('telemetry', metric_name)
        return '{}.{}.{}'.format(namespace, 'telemetry', metric_name)

    def _send_telemetry_gauge(self, metric_name, val, scraper_config):
        if scraper_config['telemetry']:
            metric_name_with_namespace = self._telemetry_metric_name_with_namespace(metric_name, scraper_config)
            # Determine the tags to send
            custom_tags = scraper_config['custom_tags']
            tags = list(custom_tags)
            tags.extend(scraper_config['_metric_tags'])
            self.gauge(metric_name_with_namespace, val, tags=tags)

    def _send_telemetry_counter(self, metric_name, val, scraper_config, extra_tags=None):
        if scraper_config['telemetry']:
            metric_name_with_namespace = self._telemetry_metric_name_with_namespace(metric_name, scraper_config)
            # Determine the tags to send
            custom_tags = scraper_config['custom_tags']
            tags = list(custom_tags)
            tags.extend(scraper_config['_metric_tags'])
            if extra_tags:
                tags.extend(extra_tags)
            self.count(metric_name_with_namespace, val, tags=tags)

    def _store_labels(self, metric, scraper_config):
        # If targeted metric, store labels
        if metric.name not in scraper_config['label_joins']:
            return

        watched = scraper_config['_watched_labels']
        matching_labels = watched['sets'][metric.name]
        mapping_key = watched['keys'][metric.name]

        labels_to_get = scraper_config['label_joins'][metric.name]['labels_to_get']
        get_all = '*' in labels_to_get
        match_all = mapping_key == '*'
        for sample in metric.samples:
            # metadata-only metrics that are used for label joins are always equal to 1
            # this is required for metrics where all combinations of a state are sent
            # but only the active one is set to 1 (others are set to 0)
            # example: kube_pod_status_phase in kube-state-metrics
            if sample[self.SAMPLE_VALUE] != 1:
                continue

            sample_labels = sample[self.SAMPLE_LABELS]
            sample_labels_keys = sample_labels.keys()

            if match_all or matching_labels.issubset(sample_labels_keys):
                label_dict = {}

                if get_all:
                    for label_name, label_value in sample_labels.items():
                        if label_name in matching_labels:
                            continue
                        label_dict[label_name] = label_value
                else:
                    for label_name in labels_to_get:
                        if label_name in sample_labels:
                            label_dict[label_name] = sample_labels[label_name]

                if match_all:
                    mapping_value = '*'
                else:
                    mapping_value = ','.join([sample_labels[l] for l in matching_labels])

                scraper_config['_label_mapping'].setdefault(mapping_key, {}).setdefault(mapping_value, {}).update(
                    label_dict
                )

    def _join_labels(self, metric, scraper_config):
        # Filter metric to see if we can enrich with joined labels
        if not scraper_config['label_joins']:
            return

        label_mapping = scraper_config['_label_mapping']
        active_label_mapping = scraper_config['_active_label_mapping']

        watched = scraper_config['_watched_labels']
        sets = watched['sets']
        keys = watched['keys']
        singles = watched['singles']

        for sample in metric.samples:
            sample_labels = sample[self.SAMPLE_LABELS]
            sample_labels_keys = sample_labels.keys()

            # Match with wildcard label
            # Label names are [a-zA-Z0-9_]*, so no risk of collision
            if '*' in singles:
                active_label_mapping.setdefault('*', {})['*'] = True

                if '*' in label_mapping and '*' in label_mapping['*']:
                    sample_labels.update(label_mapping['*']['*'])

            # Match with single labels
            matching_single_labels = singles.intersection(sample_labels_keys)
            for label in matching_single_labels:
                mapping_key = label
                mapping_value = sample_labels[label]

                active_label_mapping.setdefault(mapping_key, {})[mapping_value] = True

                if mapping_key in label_mapping and mapping_value in label_mapping[mapping_key]:
                    sample_labels.update(label_mapping[mapping_key][mapping_value])

            # Match with tuples of labels
            for key, mapping_key in keys.items():
                if mapping_key in matching_single_labels:
                    continue

                matching_labels = sets[key]

                if matching_labels.issubset(sample_labels_keys):
                    matching_values = [sample_labels[l] for l in matching_labels]
                    mapping_value = ','.join(matching_values)

                    active_label_mapping.setdefault(mapping_key, {})[mapping_value] = True

                    if mapping_key in label_mapping and mapping_value in label_mapping[mapping_key]:
                        sample_labels.update(label_mapping[mapping_key][mapping_value])

    def _ignore_metrics_by_label(self, scraper_config, metric_name, sample):
        ignore_metrics_by_label = scraper_config['ignore_metrics_by_labels']
        sample_labels = sample[self.SAMPLE_LABELS]
        for label_key, label_values in ignore_metrics_by_label.items():
            if not label_values:
                self.log.debug(
                    "Skipping filter label `%s` with an empty values list, did you mean to use '*' wildcard?", label_key
                )
            elif '*' in label_values:
                # Wildcard '*' means all metrics with label_key will be ignored
                self.log.debug("Detected wildcard for label `%s`", label_key)
                if label_key in sample_labels.keys():
                    self.log.debug("Skipping metric `%s` due to label key matching: %s", metric_name, label_key)
                    return True
            else:
                for val in label_values:
                    if label_key in sample_labels and sample_labels[label_key] == val:
                        self.log.debug(
                            "Skipping metric `%s` due to label `%s` value matching: %s", metric_name, label_key, val
                        )
                        return True
        return False

    def process_metric(self, metric, scraper_config, metric_transformers=None):
        """
        Handle a Prometheus metric according to the following flow:
        - search `scraper_config['metrics_mapper']` for a prometheus.metric to datadog.metric mapping
        - call check method with the same name as the metric
        - log info if none of the above worked

        `metric_transformers` is a dict of `<metric name>:<function to run when the metric name is encountered>`
        """
        # If targeted metric, store labels
        self._store_labels(metric, scraper_config)

        if scraper_config['ignore_metrics']:
            if metric.name in scraper_config['_ignored_metrics']:
                self._send_telemetry_counter(
                    self.TELEMETRY_COUNTER_METRICS_IGNORE_COUNT, len(metric.samples), scraper_config
                )
                return  # Ignore the metric

            if scraper_config['_ignored_re'] and scraper_config['_ignored_re'].search(metric.name):
                # Metric must be ignored
                scraper_config['_ignored_metrics'].add(metric.name)
                self._send_telemetry_counter(
                    self.TELEMETRY_COUNTER_METRICS_IGNORE_COUNT, len(metric.samples), scraper_config
                )
                return  # Ignore the metric

        self._send_telemetry_counter(self.TELEMETRY_COUNTER_METRICS_PROCESS_COUNT, len(metric.samples), scraper_config)

        if self._filter_metric(metric, scraper_config):
            return  # Ignore the metric

        # Filter metric to see if we can enrich with joined labels
        self._join_labels(metric, scraper_config)

        if scraper_config['_dry_run']:
            return

        try:
            self.submit_openmetric(scraper_config['metrics_mapper'][metric.name], metric, scraper_config)
        except KeyError:
            if metric_transformers is not None and metric.name in metric_transformers:
                try:
                    # Get the transformer function for this specific metric
                    transformer = metric_transformers[metric.name]
                    transformer(metric, scraper_config)
                except Exception as err:
                    self.log.warning('Error handling metric: %s - error: %s', metric.name, err)

                return
            # check for wildcards in transformers
            for transformer_name, transformer in metric_transformers.items():
                if transformer_name.endswith('*') and metric.name.startswith(transformer_name[:-1]):
                    transformer(metric, scraper_config, transformer_name)

            # try matching wildcards
            if scraper_config['_wildcards_re'] and scraper_config['_wildcards_re'].search(metric.name):
                self.submit_openmetric(metric.name, metric, scraper_config)
                return

            self.log.debug(
                'Skipping metric `%s` as it is not defined in the metrics mapper, '
                'has no transformer function, nor does it match any wildcards.',
                metric.name,
            )

    def poll(self, scraper_config, headers=None):
        """
        Returns a valid `requests.Response`, otherwise raise requests.HTTPError if the status code of the
        response isn't valid - see `response.raise_for_status()`

        The caller needs to close the requests.Response.

        Custom headers can be added to the default headers.
        """
        endpoint = scraper_config.get('prometheus_url')

        # Should we send a service check for when we make a request
        health_service_check = scraper_config['health_service_check']
        service_check_name = self._metric_name_with_namespace('prometheus.health', scraper_config)
        service_check_tags = ['endpoint:{}'.format(endpoint)]
        service_check_tags.extend(scraper_config['custom_tags'])

        try:
            response = self.send_request(endpoint, scraper_config, headers)
        except requests.exceptions.SSLError:
            self.log.error("Invalid SSL settings for requesting %s endpoint", endpoint)
            raise
        except IOError:
            if health_service_check:
                self.service_check(service_check_name, AgentCheck.CRITICAL, tags=service_check_tags)
            raise
        try:
            response.raise_for_status()
            if health_service_check:
                self.service_check(service_check_name, AgentCheck.OK, tags=service_check_tags)
            return response
        except requests.HTTPError:
            response.close()
            if health_service_check:
                self.service_check(service_check_name, AgentCheck.CRITICAL, tags=service_check_tags)
            raise

    def send_request(self, endpoint, scraper_config, headers=None):
        kwargs = {}
        if headers:
            kwargs['headers'] = headers

        http_handler = self.get_http_handler(scraper_config)

        return http_handler.get(endpoint, stream=True, **kwargs)

    def get_hostname_for_sample(self, sample, scraper_config):
        """
        Expose the label_to_hostname mapping logic to custom handler methods
        """
        return self._get_hostname(None, sample, scraper_config)

    def submit_openmetric(self, metric_name, metric, scraper_config, hostname=None):
        """
        For each sample in the metric, report it as a gauge with all labels as tags
        except if a labels `dict` is passed, in which case keys are label names we'll extract
        and corresponding values are tag names we'll use (eg: {'node': 'node'}).

        Histograms generate a set of values instead of a unique metric.
        `send_histograms_buckets` is used to specify if you want to
        send the buckets as tagged values when dealing with histograms.

        `custom_tags` is an array of `tag:value` that will be added to the
        metric when sending the gauge to Datadog.
        """
        if metric.type in ["gauge", "counter", "rate"]:
            metric_name_with_namespace = self._metric_name_with_namespace(metric_name, scraper_config)
            for sample in metric.samples:
                if self._ignore_metrics_by_label(scraper_config, metric_name, sample):
                    continue

                val = sample[self.SAMPLE_VALUE]
                if not self._is_value_valid(val):
                    self.log.debug("Metric value is not supported for metric %s", sample[self.SAMPLE_NAME])
                    continue
                custom_hostname = self._get_hostname(hostname, sample, scraper_config)
                # Determine the tags to send
                tags = self._metric_tags(metric_name, val, sample, scraper_config, hostname=custom_hostname)
                if metric.type == "counter" and scraper_config['send_monotonic_counter']:
                    self.monotonic_count(
                        metric_name_with_namespace,
                        val,
                        tags=tags,
                        hostname=custom_hostname,
                        flush_first_value=scraper_config['_flush_first_value'],
                    )
                elif metric.type == "rate":
                    self.rate(metric_name_with_namespace, val, tags=tags, hostname=custom_hostname)
                else:
                    self.gauge(metric_name_with_namespace, val, tags=tags, hostname=custom_hostname)

                    # Metric is a "counter" but legacy behavior has "send_as_monotonic" defaulted to False
                    # Submit metric as monotonic_count with appended name
                    if metric.type == "counter" and scraper_config['send_monotonic_with_gauge']:
                        self.monotonic_count(
                            metric_name_with_namespace + '.total',
                            val,
                            tags=tags,
                            hostname=custom_hostname,
                            flush_first_value=scraper_config['_flush_first_value'],
                        )
        elif metric.type == "histogram":
            self._submit_gauges_from_histogram(metric_name, metric, scraper_config)
        elif metric.type == "summary":
            self._submit_gauges_from_summary(metric_name, metric, scraper_config)
        else:
            self.log.error("Metric type %s unsupported for metric %s.", metric.type, metric_name)

    def _get_hostname(self, hostname, sample, scraper_config):
        """
        If hostname is None, look at label_to_hostname setting
        """
        if (
            hostname is None
            and scraper_config['label_to_hostname'] is not None
            and sample[self.SAMPLE_LABELS].get(scraper_config['label_to_hostname'])
        ):
            hostname = sample[self.SAMPLE_LABELS][scraper_config['label_to_hostname']]
            suffix = scraper_config['label_to_hostname_suffix']
            if suffix is not None:
                hostname += suffix

        return hostname

    def _submit_gauges_from_summary(self, metric_name, metric, scraper_config, hostname=None):
        """
        Extracts metrics from a prometheus summary metric and sends them as gauges
        """
        for sample in metric.samples:
            val = sample[self.SAMPLE_VALUE]
            if not self._is_value_valid(val):
                self.log.debug("Metric value is not supported for metric %s", sample[self.SAMPLE_NAME])
                continue
            if self._ignore_metrics_by_label(scraper_config, metric_name, sample):
                continue
            custom_hostname = self._get_hostname(hostname, sample, scraper_config)
            if sample[self.SAMPLE_NAME].endswith("_sum"):
                tags = self._metric_tags(metric_name, val, sample, scraper_config, hostname=custom_hostname)
                self._submit_distribution_count(
                    scraper_config['send_distribution_sums_as_monotonic'],
                    scraper_config['send_monotonic_with_gauge'],
                    "{}.sum".format(self._metric_name_with_namespace(metric_name, scraper_config)),
                    val,
                    tags=tags,
                    hostname=custom_hostname,
                    flush_first_value=scraper_config['_flush_first_value'],
                )
            elif sample[self.SAMPLE_NAME].endswith("_count"):
                tags = self._metric_tags(metric_name, val, sample, scraper_config, hostname=custom_hostname)
                self._submit_distribution_count(
                    scraper_config['send_distribution_counts_as_monotonic'],
                    scraper_config['send_monotonic_with_gauge'],
                    "{}.count".format(self._metric_name_with_namespace(metric_name, scraper_config)),
                    val,
                    tags=tags,
                    hostname=custom_hostname,
                    flush_first_value=scraper_config['_flush_first_value'],
                )
            else:
                try:
                    quantile = sample[self.SAMPLE_LABELS]["quantile"]
                except KeyError:
                    # TODO: In the Prometheus spec the 'quantile' label is optional, but it's not clear yet
                    # what we should do in this case. Let's skip for now and submit the rest of metrics.
                    message = (
                        '"quantile" label not present in metric %r. '
                        'Quantile-less summary metrics are not currently supported. Skipping...'
                    )
                    self.log.debug(message, metric_name)
                    continue

                sample[self.SAMPLE_LABELS]["quantile"] = str(float(quantile))
                tags = self._metric_tags(metric_name, val, sample, scraper_config, hostname=custom_hostname)
                self.gauge(
                    "{}.quantile".format(self._metric_name_with_namespace(metric_name, scraper_config)),
                    val,
                    tags=tags,
                    hostname=custom_hostname,
                )

    def _submit_gauges_from_histogram(self, metric_name, metric, scraper_config, hostname=None):
        """
        Extracts metrics from a prometheus histogram and sends them as gauges
        """
        if scraper_config['non_cumulative_buckets']:
            self._decumulate_histogram_buckets(metric)
        for sample in metric.samples:
            val = sample[self.SAMPLE_VALUE]
            if not self._is_value_valid(val):
                self.log.debug("Metric value is not supported for metric %s", sample[self.SAMPLE_NAME])
                continue
            if self._ignore_metrics_by_label(scraper_config, metric_name, sample):
                continue
            custom_hostname = self._get_hostname(hostname, sample, scraper_config)
            if sample[self.SAMPLE_NAME].endswith("_sum") and not scraper_config['send_distribution_buckets']:
                tags = self._metric_tags(metric_name, val, sample, scraper_config, hostname)
                self._submit_distribution_count(
                    scraper_config['send_distribution_sums_as_monotonic'],
                    scraper_config['send_monotonic_with_gauge'],
                    "{}.sum".format(self._metric_name_with_namespace(metric_name, scraper_config)),
                    val,
                    tags=tags,
                    hostname=custom_hostname,
                    flush_first_value=scraper_config['_flush_first_value'],
                )
            elif sample[self.SAMPLE_NAME].endswith("_count") and not scraper_config['send_distribution_buckets']:
                tags = self._metric_tags(metric_name, val, sample, scraper_config, hostname)
                if scraper_config['send_histograms_buckets']:
                    tags.append("upper_bound:none")
                self._submit_distribution_count(
                    scraper_config['send_distribution_counts_as_monotonic'],
                    scraper_config['send_monotonic_with_gauge'],
                    "{}.count".format(self._metric_name_with_namespace(metric_name, scraper_config)),
                    val,
                    tags=tags,
                    hostname=custom_hostname,
                    flush_first_value=scraper_config['_flush_first_value'],
                )
            elif scraper_config['send_histograms_buckets'] and sample[self.SAMPLE_NAME].endswith("_bucket"):
                if scraper_config['send_distribution_buckets']:
                    self._submit_sample_histogram_buckets(metric_name, sample, scraper_config, hostname)
                elif "Inf" not in sample[self.SAMPLE_LABELS]["le"] or scraper_config['non_cumulative_buckets']:
                    sample[self.SAMPLE_LABELS]["le"] = str(float(sample[self.SAMPLE_LABELS]["le"]))
                    tags = self._metric_tags(metric_name, val, sample, scraper_config, hostname)
                    self._submit_distribution_count(
                        scraper_config['send_distribution_counts_as_monotonic'],
                        scraper_config['send_monotonic_with_gauge'],
                        "{}.count".format(self._metric_name_with_namespace(metric_name, scraper_config)),
                        val,
                        tags=tags,
                        hostname=custom_hostname,
                        flush_first_value=scraper_config['_flush_first_value'],
                    )

    def _compute_bucket_hash(self, tags):
        # we need the unique context for all the buckets
        # hence we remove the "le" tag
        return hash(frozenset(sorted((k, v) for k, v in tags.items() if k != 'le')))

    def _decumulate_histogram_buckets(self, metric):
        """
        Decumulate buckets in a given histogram metric and adds the lower_bound label (le being upper_bound)
        """
        bucket_values_by_context_upper_bound = {}
        for sample in metric.samples:
            if sample[self.SAMPLE_NAME].endswith("_bucket"):
                context_key = self._compute_bucket_hash(sample[self.SAMPLE_LABELS])
                if context_key not in bucket_values_by_context_upper_bound:
                    bucket_values_by_context_upper_bound[context_key] = {}
                bucket_values_by_context_upper_bound[context_key][float(sample[self.SAMPLE_LABELS]["le"])] = sample[
                    self.SAMPLE_VALUE
                ]

        sorted_buckets_by_context = {}
        for context in bucket_values_by_context_upper_bound:
            sorted_buckets_by_context[context] = sorted(bucket_values_by_context_upper_bound[context])

        # Tuples (lower_bound, upper_bound, value)
        bucket_tuples_by_context_upper_bound = {}
        for context in sorted_buckets_by_context:
            for i, upper_b in enumerate(sorted_buckets_by_context[context]):
                if i == 0:
                    if context not in bucket_tuples_by_context_upper_bound:
                        bucket_tuples_by_context_upper_bound[context] = {}
                    if upper_b > 0:
                        # positive buckets start at zero
                        bucket_tuples_by_context_upper_bound[context][upper_b] = (
                            0,
                            upper_b,
                            bucket_values_by_context_upper_bound[context][upper_b],
                        )
                    else:
                        # negative buckets start at -inf
                        bucket_tuples_by_context_upper_bound[context][upper_b] = (
                            self.MINUS_INF,
                            upper_b,
                            bucket_values_by_context_upper_bound[context][upper_b],
                        )
                    continue
                tmp = (
                    bucket_values_by_context_upper_bound[context][upper_b]
                    - bucket_values_by_context_upper_bound[context][sorted_buckets_by_context[context][i - 1]]
                )
                bucket_tuples_by_context_upper_bound[context][upper_b] = (
                    sorted_buckets_by_context[context][i - 1],
                    upper_b,
                    tmp,
                )

        # modify original metric to inject lower_bound & modified value
        for i, sample in enumerate(metric.samples):
            if not sample[self.SAMPLE_NAME].endswith("_bucket"):
                continue

            context_key = self._compute_bucket_hash(sample[self.SAMPLE_LABELS])
            matching_bucket_tuple = bucket_tuples_by_context_upper_bound[context_key][
                float(sample[self.SAMPLE_LABELS]["le"])
            ]
            # Replacing the sample tuple
            sample[self.SAMPLE_LABELS]["lower_bound"] = str(matching_bucket_tuple[0])
            metric.samples[i] = Sample(sample[self.SAMPLE_NAME], sample[self.SAMPLE_LABELS], matching_bucket_tuple[2])

    def _submit_sample_histogram_buckets(self, metric_name, sample, scraper_config, hostname=None):
        if "lower_bound" not in sample[self.SAMPLE_LABELS] or "le" not in sample[self.SAMPLE_LABELS]:
            self.log.warning(
                "Metric: %s was not containing required bucket boundaries labels: %s",
                metric_name,
                sample[self.SAMPLE_LABELS],
            )
            return
        sample[self.SAMPLE_LABELS]["le"] = str(float(sample[self.SAMPLE_LABELS]["le"]))
        sample[self.SAMPLE_LABELS]["lower_bound"] = str(float(sample[self.SAMPLE_LABELS]["lower_bound"]))
        if sample[self.SAMPLE_LABELS]["le"] == sample[self.SAMPLE_LABELS]["lower_bound"]:
            # this can happen for -inf/-inf bucket that we don't want to send (always 0)
            self.log.warning(
                "Metric: %s has bucket boundaries equal, skipping: %s", metric_name, sample[self.SAMPLE_LABELS]
            )
            return
        tags = self._metric_tags(metric_name, sample[self.SAMPLE_VALUE], sample, scraper_config, hostname)
        self.submit_histogram_bucket(
            self._metric_name_with_namespace(metric_name, scraper_config),
            sample[self.SAMPLE_VALUE],
            float(sample[self.SAMPLE_LABELS]["lower_bound"]),
            float(sample[self.SAMPLE_LABELS]["le"]),
            True,
            hostname,
            tags,
            flush_first_value=scraper_config['_flush_first_value'],
        )

    def _submit_distribution_count(
        self,
        monotonic,
        send_monotonic_with_gauge,
        metric_name,
        value,
        tags=None,
        hostname=None,
        flush_first_value=False,
    ):
        if monotonic:
            self.monotonic_count(metric_name, value, tags=tags, hostname=hostname, flush_first_value=flush_first_value)
        else:
            self.gauge(metric_name, value, tags=tags, hostname=hostname)
            if send_monotonic_with_gauge:
                self.monotonic_count(
                    metric_name + ".total", value, tags=tags, hostname=hostname, flush_first_value=flush_first_value
                )

    def _metric_tags(self, metric_name, val, sample, scraper_config, hostname=None):
        custom_tags = scraper_config['custom_tags']
        _tags = list(custom_tags)
        _tags.extend(scraper_config['_metric_tags'])
        for label_name, label_value in sample[self.SAMPLE_LABELS].items():
            if label_name not in scraper_config['exclude_labels']:
                if label_name in scraper_config['include_labels'] or len(scraper_config['include_labels']) == 0:
                    tag_name = scraper_config['labels_mapper'].get(label_name, label_name)
                    _tags.append('{}:{}'.format(to_native_string(tag_name), to_native_string(label_value)))
        return self._finalize_tags_to_submit(
            _tags, metric_name, val, sample, custom_tags=custom_tags, hostname=hostname
        )

    def _is_value_valid(self, val):
        return not (isnan(val) or isinf(val))

    def _get_bearer_token(self, bearer_token_auth, bearer_token_path):
        if bearer_token_auth is False:
            return None

        path = None
        if bearer_token_path is not None:
            if isfile(bearer_token_path):
                path = bearer_token_path
            else:
                self.log.error("File not found: %s", bearer_token_path)
        elif isfile(self.KUBERNETES_TOKEN_PATH):
            path = self.KUBERNETES_TOKEN_PATH

        if path is None:
            self.log.error("Cannot get bearer token from bearer_token_path or auto discovery")
            raise IOError("Cannot get bearer token from bearer_token_path or auto discovery")

        try:
            with open(path, 'r') as f:
                return f.read().rstrip()
        except Exception as err:
            self.log.error("Cannot get bearer token from path: %s - error: %s", path, err)
            raise

    def _refresh_bearer_token(self, scraper_config):
        """
        Refreshes the bearer token if the refresh interval is elapsed.
        """
        now = time.time()
        if now - scraper_config['_bearer_token_last_refresh'] > scraper_config['bearer_token_refresh_interval']:
            scraper_config['_bearer_token'] = self._get_bearer_token(
                scraper_config['bearer_token_auth'], scraper_config['bearer_token_path']
            )
            scraper_config['_bearer_token_last_refresh'] = now

    def _histogram_convert_values(self, metric_name, converter):
        def _convert(metric, scraper_config=None):
            for index, sample in enumerate(metric.samples):
                val = sample[self.SAMPLE_VALUE]
                if not self._is_value_valid(val):
                    self.log.debug("Metric value is not supported for metric %s", sample[self.SAMPLE_NAME])
                    continue
                if sample[self.SAMPLE_NAME].endswith("_sum"):
                    lst = list(sample)
                    lst[self.SAMPLE_VALUE] = converter(val)
                    metric.samples[index] = tuple(lst)
                elif sample[self.SAMPLE_NAME].endswith("_bucket") and "Inf" not in sample[self.SAMPLE_LABELS]["le"]:
                    sample[self.SAMPLE_LABELS]["le"] = str(converter(float(sample[self.SAMPLE_LABELS]["le"])))
            self.submit_openmetric(metric_name, metric, scraper_config)

        return _convert

    def _histogram_from_microseconds_to_seconds(self, metric_name):
        return self._histogram_convert_values(metric_name, lambda v: v / self.MICROS_IN_S)

    def _histogram_from_seconds_to_microseconds(self, metric_name):
        return self._histogram_convert_values(metric_name, lambda v: v * self.MICROS_IN_S)

    def _summary_convert_values(self, metric_name, converter):
        def _convert(metric, scraper_config=None):
            for index, sample in enumerate(metric.samples):
                val = sample[self.SAMPLE_VALUE]
                if not self._is_value_valid(val):
                    self.log.debug("Metric value is not supported for metric %s", sample[self.SAMPLE_NAME])
                    continue
                if sample[self.SAMPLE_NAME].endswith("_count"):
                    continue
                else:
                    lst = list(sample)
                    lst[self.SAMPLE_VALUE] = converter(val)
                    metric.samples[index] = tuple(lst)
            self.submit_openmetric(metric_name, metric, scraper_config)

        return _convert

    def _summary_from_microseconds_to_seconds(self, metric_name):
        return self._summary_convert_values(metric_name, lambda v: v / self.MICROS_IN_S)

    def _summary_from_seconds_to_microseconds(self, metric_name):
        return self._summary_convert_values(metric_name, lambda v: v * self.MICROS_IN_S)
parse_metric_family(response, scraper_config)

Parse the MetricFamily from a valid requests.Response object to provide a MetricFamily object. The text format uses iter_lines() generator.

Source code in datadog_checks_base/datadog_checks/base/checks/openmetrics/mixins.py
def parse_metric_family(self, response, scraper_config):
    """
    Parse the MetricFamily from a valid `requests.Response` object to provide a MetricFamily object.
    The text format uses iter_lines() generator.
    """
    if response.encoding is None:
        response.encoding = 'utf-8'
    input_gen = response.iter_lines(decode_unicode=True)
    if scraper_config['_text_filter_blacklist']:
        input_gen = self._text_filter_input(input_gen, scraper_config)

    for metric in text_fd_to_metric_families(input_gen):
        self._send_telemetry_counter(
            self.TELEMETRY_COUNTER_METRICS_INPUT_COUNT, len(metric.samples), scraper_config
        )
        type_override = scraper_config['type_overrides'].get(metric.name)
        if type_override:
            metric.type = type_override
        elif scraper_config['_type_override_patterns']:
            for pattern, new_type in scraper_config['_type_override_patterns'].items():
                if pattern.search(metric.name):
                    metric.type = new_type
                    break
        if metric.type not in self.METRIC_TYPES:
            continue
        metric.name = self._remove_metric_prefix(metric.name, scraper_config)
        yield metric
scrape_metrics(scraper_config)

Poll the data from Prometheus and return the metrics as a generator.

Source code in datadog_checks_base/datadog_checks/base/checks/openmetrics/mixins.py
def scrape_metrics(self, scraper_config):
    """
    Poll the data from Prometheus and return the metrics as a generator.
    """
    response = self.poll(scraper_config)
    if scraper_config['telemetry']:
        if 'content-length' in response.headers:
            content_len = int(response.headers['content-length'])
        else:
            content_len = len(response.content)
        self._send_telemetry_gauge(self.TELEMETRY_GAUGE_MESSAGE_SIZE, content_len, scraper_config)
    try:
        # no dry run if no label joins
        if not scraper_config['label_joins']:
            scraper_config['_dry_run'] = False
        elif not scraper_config['_watched_labels']:
            watched = scraper_config['_watched_labels']
            watched['sets'] = {}
            watched['keys'] = {}
            watched['singles'] = set()
            for key, val in scraper_config['label_joins'].items():
                labels = []
                if 'labels_to_match' in val:
                    labels = val['labels_to_match']
                elif 'label_to_match' in val:
                    self.log.warning("`label_to_match` is being deprecated, please use `labels_to_match`")
                    if isinstance(val['label_to_match'], list):
                        labels = val['label_to_match']
                    else:
                        labels = [val['label_to_match']]

                if labels:
                    s = frozenset(labels)
                    watched['sets'][key] = s
                    watched['keys'][key] = ','.join(s)
                    if len(labels) == 1:
                        watched['singles'].add(labels[0])

        for metric in self.parse_metric_family(response, scraper_config):
            yield metric

        # Set dry run off
        scraper_config['_dry_run'] = False
        # Garbage collect unused mapping and reset active labels
        for metric, mapping in scraper_config['_label_mapping'].items():
            for key in list(mapping):
                if (
                    metric in scraper_config['_active_label_mapping']
                    and key not in scraper_config['_active_label_mapping'][metric]
                ):
                    del scraper_config['_label_mapping'][metric][key]
        scraper_config['_active_label_mapping'] = {}
    finally:
        response.close()
process(scraper_config, metric_transformers=None)

Polls the data from Prometheus and submits them as Datadog metrics. endpoint is the metrics endpoint to use to poll metrics from Prometheus

Note that if the instance has a tags attribute, it will be pushed automatically as additional custom tags and added to the metrics

Source code in datadog_checks_base/datadog_checks/base/checks/openmetrics/mixins.py
def process(self, scraper_config, metric_transformers=None):
    """
    Polls the data from Prometheus and submits them as Datadog metrics.
    `endpoint` is the metrics endpoint to use to poll metrics from Prometheus

    Note that if the instance has a `tags` attribute, it will be pushed
    automatically as additional custom tags and added to the metrics
    """

    transformers = scraper_config['_default_metric_transformers'].copy()
    if metric_transformers:
        transformers.update(metric_transformers)

    counter_buffer = []
    agent_start_time = None
    process_start_time = None
    if not scraper_config['_flush_first_value'] and scraper_config['use_process_start_time']:
        agent_start_time = datadog_agent.get_process_start_time()

    if scraper_config['bearer_token_auth']:
        self._refresh_bearer_token(scraper_config)

    for metric in self.scrape_metrics(scraper_config):
        if agent_start_time is not None:
            if metric.name == 'process_start_time_seconds' and metric.samples:
                min_metric_value = min(s[self.SAMPLE_VALUE] for s in metric.samples)
                if process_start_time is None or min_metric_value < process_start_time:
                    process_start_time = min_metric_value
            if metric.type in self.METRICS_WITH_COUNTERS:
                counter_buffer.append(metric)
                continue

        self.process_metric(metric, scraper_config, metric_transformers=transformers)

    if agent_start_time and process_start_time and agent_start_time < process_start_time:
        # If agent was started before the process, we assume counters were started recently from zero,
        # and thus we can compute the rates.
        scraper_config['_flush_first_value'] = True

    for metric in counter_buffer:
        self.process_metric(metric, scraper_config, metric_transformers=transformers)

    scraper_config['_flush_first_value'] = True
poll(scraper_config, headers=None)

Returns a valid requests.Response, otherwise raise requests.HTTPError if the status code of the response isn't valid - see response.raise_for_status()

The caller needs to close the requests.Response.

Custom headers can be added to the default headers.

Source code in datadog_checks_base/datadog_checks/base/checks/openmetrics/mixins.py
def poll(self, scraper_config, headers=None):
    """
    Returns a valid `requests.Response`, otherwise raise requests.HTTPError if the status code of the
    response isn't valid - see `response.raise_for_status()`

    The caller needs to close the requests.Response.

    Custom headers can be added to the default headers.
    """
    endpoint = scraper_config.get('prometheus_url')

    # Should we send a service check for when we make a request
    health_service_check = scraper_config['health_service_check']
    service_check_name = self._metric_name_with_namespace('prometheus.health', scraper_config)
    service_check_tags = ['endpoint:{}'.format(endpoint)]
    service_check_tags.extend(scraper_config['custom_tags'])

    try:
        response = self.send_request(endpoint, scraper_config, headers)
    except requests.exceptions.SSLError:
        self.log.error("Invalid SSL settings for requesting %s endpoint", endpoint)
        raise
    except IOError:
        if health_service_check:
            self.service_check(service_check_name, AgentCheck.CRITICAL, tags=service_check_tags)
        raise
    try:
        response.raise_for_status()
        if health_service_check:
            self.service_check(service_check_name, AgentCheck.OK, tags=service_check_tags)
        return response
    except requests.HTTPError:
        response.close()
        if health_service_check:
            self.service_check(service_check_name, AgentCheck.CRITICAL, tags=service_check_tags)
        raise
submit_openmetric(metric_name, metric, scraper_config, hostname=None)

For each sample in the metric, report it as a gauge with all labels as tags except if a labels dict is passed, in which case keys are label names we'll extract and corresponding values are tag names we'll use (eg: {'node': 'node'}).

Histograms generate a set of values instead of a unique metric. send_histograms_buckets is used to specify if you want to send the buckets as tagged values when dealing with histograms.

custom_tags is an array of tag:value that will be added to the metric when sending the gauge to Datadog.

Source code in datadog_checks_base/datadog_checks/base/checks/openmetrics/mixins.py
def submit_openmetric(self, metric_name, metric, scraper_config, hostname=None):
    """
    For each sample in the metric, report it as a gauge with all labels as tags
    except if a labels `dict` is passed, in which case keys are label names we'll extract
    and corresponding values are tag names we'll use (eg: {'node': 'node'}).

    Histograms generate a set of values instead of a unique metric.
    `send_histograms_buckets` is used to specify if you want to
    send the buckets as tagged values when dealing with histograms.

    `custom_tags` is an array of `tag:value` that will be added to the
    metric when sending the gauge to Datadog.
    """
    if metric.type in ["gauge", "counter", "rate"]:
        metric_name_with_namespace = self._metric_name_with_namespace(metric_name, scraper_config)
        for sample in metric.samples:
            if self._ignore_metrics_by_label(scraper_config, metric_name, sample):
                continue

            val = sample[self.SAMPLE_VALUE]
            if not self._is_value_valid(val):
                self.log.debug("Metric value is not supported for metric %s", sample[self.SAMPLE_NAME])
                continue
            custom_hostname = self._get_hostname(hostname, sample, scraper_config)
            # Determine the tags to send
            tags = self._metric_tags(metric_name, val, sample, scraper_config, hostname=custom_hostname)
            if metric.type == "counter" and scraper_config['send_monotonic_counter']:
                self.monotonic_count(
                    metric_name_with_namespace,
                    val,
                    tags=tags,
                    hostname=custom_hostname,
                    flush_first_value=scraper_config['_flush_first_value'],
                )
            elif metric.type == "rate":
                self.rate(metric_name_with_namespace, val, tags=tags, hostname=custom_hostname)
            else:
                self.gauge(metric_name_with_namespace, val, tags=tags, hostname=custom_hostname)

                # Metric is a "counter" but legacy behavior has "send_as_monotonic" defaulted to False
                # Submit metric as monotonic_count with appended name
                if metric.type == "counter" and scraper_config['send_monotonic_with_gauge']:
                    self.monotonic_count(
                        metric_name_with_namespace + '.total',
                        val,
                        tags=tags,
                        hostname=custom_hostname,
                        flush_first_value=scraper_config['_flush_first_value'],
                    )
    elif metric.type == "histogram":
        self._submit_gauges_from_histogram(metric_name, metric, scraper_config)
    elif metric.type == "summary":
        self._submit_gauges_from_summary(metric_name, metric, scraper_config)
    else:
        self.log.error("Metric type %s unsupported for metric %s.", metric.type, metric_name)
process_metric(metric, scraper_config, metric_transformers=None)

Handle a Prometheus metric according to the following flow: - search scraper_config['metrics_mapper'] for a prometheus.metric to datadog.metric mapping - call check method with the same name as the metric - log info if none of the above worked

metric_transformers is a dict of <metric name>:<function to run when the metric name is encountered>

Source code in datadog_checks_base/datadog_checks/base/checks/openmetrics/mixins.py
def process_metric(self, metric, scraper_config, metric_transformers=None):
    """
    Handle a Prometheus metric according to the following flow:
    - search `scraper_config['metrics_mapper']` for a prometheus.metric to datadog.metric mapping
    - call check method with the same name as the metric
    - log info if none of the above worked

    `metric_transformers` is a dict of `<metric name>:<function to run when the metric name is encountered>`
    """
    # If targeted metric, store labels
    self._store_labels(metric, scraper_config)

    if scraper_config['ignore_metrics']:
        if metric.name in scraper_config['_ignored_metrics']:
            self._send_telemetry_counter(
                self.TELEMETRY_COUNTER_METRICS_IGNORE_COUNT, len(metric.samples), scraper_config
            )
            return  # Ignore the metric

        if scraper_config['_ignored_re'] and scraper_config['_ignored_re'].search(metric.name):
            # Metric must be ignored
            scraper_config['_ignored_metrics'].add(metric.name)
            self._send_telemetry_counter(
                self.TELEMETRY_COUNTER_METRICS_IGNORE_COUNT, len(metric.samples), scraper_config
            )
            return  # Ignore the metric

    self._send_telemetry_counter(self.TELEMETRY_COUNTER_METRICS_PROCESS_COUNT, len(metric.samples), scraper_config)

    if self._filter_metric(metric, scraper_config):
        return  # Ignore the metric

    # Filter metric to see if we can enrich with joined labels
    self._join_labels(metric, scraper_config)

    if scraper_config['_dry_run']:
        return

    try:
        self.submit_openmetric(scraper_config['metrics_mapper'][metric.name], metric, scraper_config)
    except KeyError:
        if metric_transformers is not None and metric.name in metric_transformers:
            try:
                # Get the transformer function for this specific metric
                transformer = metric_transformers[metric.name]
                transformer(metric, scraper_config)
            except Exception as err:
                self.log.warning('Error handling metric: %s - error: %s', metric.name, err)

            return
        # check for wildcards in transformers
        for transformer_name, transformer in metric_transformers.items():
            if transformer_name.endswith('*') and metric.name.startswith(transformer_name[:-1]):
                transformer(metric, scraper_config, transformer_name)

        # try matching wildcards
        if scraper_config['_wildcards_re'] and scraper_config['_wildcards_re'].search(metric.name):
            self.submit_openmetric(metric.name, metric, scraper_config)
            return

        self.log.debug(
            'Skipping metric `%s` as it is not defined in the metrics mapper, '
            'has no transformer function, nor does it match any wildcards.',
            metric.name,
        )
create_scraper_configuration(instance=None)

Creates a scraper configuration.

If instance does not specify a value for a configuration option, the value will default to the init_config. Otherwise, the default_instance value will be used.

A default mixin configuration will be returned if there is no instance.

Source code in datadog_checks_base/datadog_checks/base/checks/openmetrics/mixins.py
def create_scraper_configuration(self, instance=None):
    """
    Creates a scraper configuration.

    If instance does not specify a value for a configuration option, the value will default to the `init_config`.
    Otherwise, the `default_instance` value will be used.

    A default mixin configuration will be returned if there is no instance.
    """
    if 'openmetrics_endpoint' in instance:
        raise CheckException('The setting `openmetrics_endpoint` is only available for Agent version 7 or later')

    # We can choose to create a default mixin configuration for an empty instance
    if instance is None:
        instance = {}

    # Supports new configuration options
    config = copy.deepcopy(instance)

    # Set the endpoint
    endpoint = instance.get('prometheus_url')
    if instance and endpoint is None:
        raise CheckException("You have to define a prometheus_url for each prometheus instance")

    # Set the bearer token authorization to customer value, then get the bearer token
    self.update_prometheus_url(instance, config, endpoint)

    # `NAMESPACE` is the prefix metrics will have. Need to be hardcoded in the
    # child check class.
    namespace = instance.get('namespace')
    # Check if we have a namespace
    if instance and namespace is None:
        if self.default_namespace is None:
            raise CheckException("You have to define a namespace for each prometheus check")
        namespace = self.default_namespace

    config['namespace'] = namespace

    # Retrieve potential default instance settings for the namespace
    default_instance = self.default_instances.get(namespace, {})

    def _get_setting(name, default):
        return instance.get(name, default_instance.get(name, default))

    # `metrics_mapper` is a dictionary where the keys are the metrics to capture
    # and the values are the corresponding metrics names to have in datadog.
    # Note: it is empty in the parent class but will need to be
    # overloaded/hardcoded in the final check not to be counted as custom metric.

    # Metrics are preprocessed if no mapping
    metrics_mapper = {}
    # We merge list and dictionaries from optional defaults & instance settings
    metrics = default_instance.get('metrics', []) + instance.get('metrics', [])
    for metric in metrics:
        if isinstance(metric, str):
            metrics_mapper[metric] = metric
        else:
            metrics_mapper.update(metric)

    config['metrics_mapper'] = metrics_mapper

    # `_wildcards_re` is a Pattern object used to match metric wildcards
    config['_wildcards_re'] = None

    wildcards = set()
    for metric in config['metrics_mapper']:
        if "*" in metric:
            wildcards.add(translate(metric))

    if wildcards:
        config['_wildcards_re'] = compile('|'.join(wildcards))

    # `prometheus_metrics_prefix` allows to specify a prefix that all
    # prometheus metrics should have. This can be used when the prometheus
    # endpoint we are scrapping allows to add a custom prefix to it's
    # metrics.
    config['prometheus_metrics_prefix'] = instance.get(
        'prometheus_metrics_prefix', default_instance.get('prometheus_metrics_prefix', '')
    )

    # `label_joins` holds the configuration for extracting 1:1 labels from
    # a target metric to all metric matching the label, example:
    # self.label_joins = {
    #     'kube_pod_info': {
    #         'labels_to_match': ['pod'],
    #         'labels_to_get': ['node', 'host_ip']
    #     }
    # }
    config['label_joins'] = default_instance.get('label_joins', {})
    config['label_joins'].update(instance.get('label_joins', {}))

    # `_label_mapping` holds the additionals label info to add for a specific
    # label value, example:
    # self._label_mapping = {
    #     'pod': {
    #         'dd-agent-9s1l1': {
    #             "node": "yolo",
    #             "host_ip": "yey"
    #         }
    #     }
    # }
    config['_label_mapping'] = {}

    # `_active_label_mapping` holds a dictionary of label values found during the run
    # to cleanup the label_mapping of unused values, example:
    # self._active_label_mapping = {
    #     'pod': {
    #         'dd-agent-9s1l1': True
    #     }
    # }
    config['_active_label_mapping'] = {}

    # `_watched_labels` holds the sets of labels to watch for enrichment
    config['_watched_labels'] = {}

    config['_dry_run'] = True

    # Some metrics are ignored because they are duplicates or introduce a
    # very high cardinality. Metrics included in this list will be silently
    # skipped without a 'Unable to handle metric' debug line in the logs
    config['ignore_metrics'] = instance.get('ignore_metrics', default_instance.get('ignore_metrics', []))
    config['_ignored_metrics'] = set()

    # `_ignored_re` is a Pattern object used to match ignored metric patterns
    config['_ignored_re'] = None
    ignored_patterns = set()

    # Separate ignored metric names and ignored patterns in different sets for faster lookup later
    for metric in config['ignore_metrics']:
        if '*' in metric:
            ignored_patterns.add(translate(metric))
        else:
            config['_ignored_metrics'].add(metric)

    if ignored_patterns:
        config['_ignored_re'] = compile('|'.join(ignored_patterns))

    # Ignore metrics based on label keys or specific label values
    config['ignore_metrics_by_labels'] = instance.get(
        'ignore_metrics_by_labels', default_instance.get('ignore_metrics_by_labels', {})
    )

    # If you want to send the buckets as tagged values when dealing with histograms,
    # set send_histograms_buckets to True, set to False otherwise.
    config['send_histograms_buckets'] = is_affirmative(
        instance.get('send_histograms_buckets', default_instance.get('send_histograms_buckets', True))
    )

    # If you want the bucket to be non cumulative and to come with upper/lower bound tags
    # set non_cumulative_buckets to True, enabled when distribution metrics are enabled.
    config['non_cumulative_buckets'] = is_affirmative(
        instance.get('non_cumulative_buckets', default_instance.get('non_cumulative_buckets', False))
    )

    # Send histograms as datadog distribution metrics
    config['send_distribution_buckets'] = is_affirmative(
        instance.get('send_distribution_buckets', default_instance.get('send_distribution_buckets', False))
    )

    # Non cumulative buckets are mandatory for distribution metrics
    if config['send_distribution_buckets'] is True:
        config['non_cumulative_buckets'] = True

    # If you want to send `counter` metrics as monotonic counts, set this value to True.
    # Set to False if you want to instead send those metrics as `gauge`.
    config['send_monotonic_counter'] = is_affirmative(
        instance.get('send_monotonic_counter', default_instance.get('send_monotonic_counter', True))
    )

    # If you want `counter` metrics to be submitted as both gauges and monotonic counts. Set this value to True.
    config['send_monotonic_with_gauge'] = is_affirmative(
        instance.get('send_monotonic_with_gauge', default_instance.get('send_monotonic_with_gauge', False))
    )

    config['send_distribution_counts_as_monotonic'] = is_affirmative(
        instance.get(
            'send_distribution_counts_as_monotonic',
            default_instance.get('send_distribution_counts_as_monotonic', False),
        )
    )

    config['send_distribution_sums_as_monotonic'] = is_affirmative(
        instance.get(
            'send_distribution_sums_as_monotonic',
            default_instance.get('send_distribution_sums_as_monotonic', False),
        )
    )

    # If the `labels_mapper` dictionary is provided, the metrics labels names
    # in the `labels_mapper` will use the corresponding value as tag name
    # when sending the gauges.
    config['labels_mapper'] = default_instance.get('labels_mapper', {})
    config['labels_mapper'].update(instance.get('labels_mapper', {}))
    # Rename bucket "le" label to "upper_bound"
    config['labels_mapper']['le'] = 'upper_bound'

    # `exclude_labels` is an array of label names to exclude. Those labels
    # will just not be added as tags when submitting the metric.
    config['exclude_labels'] = default_instance.get('exclude_labels', []) + instance.get('exclude_labels', [])

    # `include_labels` is an array of label names to include. If these labels are not in
    # the `exclude_labels` list, then they are added as tags when submitting the metric.
    config['include_labels'] = default_instance.get('include_labels', []) + instance.get('include_labels', [])

    # `type_overrides` is a dictionary where the keys are prometheus metric names
    # and the values are a metric type (name as string) to use instead of the one
    # listed in the payload. It can be used to force a type on untyped metrics.
    # Note: it is empty in the parent class but will need to be
    # overloaded/hardcoded in the final check not to be counted as custom metric.
    config['type_overrides'] = default_instance.get('type_overrides', {})
    config['type_overrides'].update(instance.get('type_overrides', {}))

    # `_type_override_patterns` is a dictionary where we store Pattern objects
    # that match metric names as keys, and their corresponding metric type overrides as values.
    config['_type_override_patterns'] = {}

    with_wildcards = set()
    for metric, type in config['type_overrides'].items():
        if '*' in metric:
            config['_type_override_patterns'][compile(translate(metric))] = type
            with_wildcards.add(metric)

    # cleanup metric names with wildcards from the 'type_overrides' dict
    for metric in with_wildcards:
        del config['type_overrides'][metric]

    # Some metrics are retrieved from different hosts and often
    # a label can hold this information, this transfers it to the hostname
    config['label_to_hostname'] = instance.get('label_to_hostname', default_instance.get('label_to_hostname', None))

    # In combination to label_as_hostname, allows to add a common suffix to the hostnames
    # submitted. This can be used for instance to discriminate hosts between clusters.
    config['label_to_hostname_suffix'] = instance.get(
        'label_to_hostname_suffix', default_instance.get('label_to_hostname_suffix', None)
    )

    # Add a 'health' service check for the prometheus endpoint
    config['health_service_check'] = is_affirmative(
        instance.get('health_service_check', default_instance.get('health_service_check', True))
    )

    # Can either be only the path to the certificate and thus you should specify the private key
    # or it can be the path to a file containing both the certificate & the private key
    config['ssl_cert'] = instance.get('ssl_cert', default_instance.get('ssl_cert', None))

    # Needed if the certificate does not include the private key
    #
    # /!\ The private key to your local certificate must be unencrypted.
    # Currently, Requests does not support using encrypted keys.
    config['ssl_private_key'] = instance.get('ssl_private_key', default_instance.get('ssl_private_key', None))

    # The path to the trusted CA used for generating custom certificates
    config['ssl_ca_cert'] = instance.get('ssl_ca_cert', default_instance.get('ssl_ca_cert', None))

    # Whether or not to validate SSL certificates
    config['ssl_verify'] = is_affirmative(instance.get('ssl_verify', default_instance.get('ssl_verify', True)))

    # Extra http headers to be sent when polling endpoint
    config['extra_headers'] = default_instance.get('extra_headers', {})
    config['extra_headers'].update(instance.get('extra_headers', {}))

    # Timeout used during the network request
    config['prometheus_timeout'] = instance.get(
        'prometheus_timeout', default_instance.get('prometheus_timeout', 10)
    )

    # Authentication used when polling endpoint
    config['username'] = instance.get('username', default_instance.get('username', None))
    config['password'] = instance.get('password', default_instance.get('password', None))

    # Custom tags that will be sent with each metric
    config['custom_tags'] = instance.get('tags', [])

    # Some tags can be ignored to reduce the cardinality.
    # This can be useful for cost optimization in containerized environments
    # when the openmetrics check is configured to collect custom metrics.
    # Even when the Agent's Tagger is configured to add low-cardinality tags only,
    # some tags can still generate unwanted metric contexts (e.g pod annotations as tags).
    ignore_tags = instance.get('ignore_tags', default_instance.get('ignore_tags', []))
    if ignore_tags:
        ignored_tags_re = compile('|'.join(set(ignore_tags)))
        config['custom_tags'] = [tag for tag in config['custom_tags'] if not ignored_tags_re.search(tag)]

    # Additional tags to be sent with each metric
    config['_metric_tags'] = []

    # List of strings to filter the input text payload on. If any line contains
    # one of these strings, it will be filtered out before being parsed.
    # INTERNAL FEATURE, might be removed in future versions
    config['_text_filter_blacklist'] = []

    # Refresh the bearer token every 60 seconds by default.
    # Ref https://github.com/DataDog/datadog-agent/pull/11686
    config['bearer_token_refresh_interval'] = instance.get(
        'bearer_token_refresh_interval', default_instance.get('bearer_token_refresh_interval', 60)
    )

    config['telemetry'] = is_affirmative(instance.get('telemetry', default_instance.get('telemetry', False)))

    # The metric name services use to indicate build information
    config['metadata_metric_name'] = instance.get(
        'metadata_metric_name', default_instance.get('metadata_metric_name')
    )

    # Map of metadata key names to label names
    config['metadata_label_map'] = instance.get(
        'metadata_label_map', default_instance.get('metadata_label_map', {})
    )

    config['_default_metric_transformers'] = {}
    if config['metadata_metric_name'] and config['metadata_label_map']:
        config['_default_metric_transformers'][config['metadata_metric_name']] = self.transform_metadata

    # Whether or not to enable flushing of the first value of monotonic counts
    config['_flush_first_value'] = False

    # Whether to use process_start_time_seconds to decide if counter-like values should  be flushed
    # on first scrape.
    config['use_process_start_time'] = is_affirmative(_get_setting('use_process_start_time', False))

    return config

Options

Some options can be set globally in init_config (with instances taking precedence). For complete documentation of every option, see the associated configuration templates for the instances and init_config sections.

Config changes between versions

There are config option changes between OpenMetrics V1 and V2, so check if any updated OpenMetrics instances use deprecated options and update accordingly.

OpenMetrics V1 OpenMetrics V2
ignore_metrics exclude_metrics
prometheus_metrics_prefix raw_metric_prefix
health_service_check enable_health_service_check
labels_mapper rename_labels
label_joins share_labels*
send_histograms_buckets collect_histogram_buckets
send_distribution_buckets histogram_buckets_as_distributions

Note: The type_overrides option is incorporated in the metrics option. This metrics option defines the list of which metrics to collect from the openmetrics_endpoint, and it can be used to remap the names and types of exposed metrics as well as use regular expression to match exposed metrics.

share_labels are used to join labels with a 1:1 mapping and can take other parameters for sharing. More information can be found in the conf.yaml.exmaple.

All HTTP options are also supported.

Source code in datadog_checks_base/datadog_checks/base/checks/openmetrics/base_check.py
class StandardFields(object):
    pass

Prometheus to Datadog metric types

The Openmetrics Base Check supports various configurations for submitting Prometheus metrics to Datadog. We currently support Prometheus gauge, counter, histogram, and summary metric types.

Gauge

A gauge metric represents a single numerical value that can arbitrarily go up or down.

Prometheus gauge metrics are submitted as Datadog gauge metrics.

Counter

A Prometheus counter is a cumulative metric that represents a single monotonically increasing counter whose value can only increase or be reset to zero on restart.

Config Option Value Datadog Metric Submitted
send_monotonic_counter true (default) monotonic_count
  false gauge

Histogram

A Prometheus histogram samples observations and counts them in configurable buckets along with a sum of all observed values.

Histogram metrics ending in:

  • _sum represent the total sum of all observed values. Generally sums are like counters but it's also possible for a negative observation which would not behave like a typical always increasing counter.
  • _count represent the total number of events that have been observed.
  • _bucket represent the cumulative counters for the observation buckets. Note that buckets are only submitted if send_histograms_buckets is enabled.
Subtype Config Option Value Datadog Metric Submitted
  send_distribution_buckets true The entire histogram can be submitted as a single distribution metric. If the option is enabled, none of the subtype metrics will be submitted.
_sum send_distribution_sums_as_monotonic false (default) gauge
    true monotonic_count
_count send_distribution_counts_as_monotonic false (default) gauge
    true monotonic_count
_bucket non_cumulative_buckets false (default) gauge
    true monotonic_count under .count metric name if send_distribution_counts_as_monotonic is enabled. Otherwise, gauge.

Summary

Prometheus summary metrics are similar to histograms but allow configurable quantiles.

Summary metrics ending in:

  • _sum represent the total sum of all observed values. Generally sums are like counters but it's also possible for a negative observation which would not behave like a typical always increasing counter.
  • _count represent the total number of events that have been observed.
  • metrics with labels like {quantile="<φ>"} represent the streaming quantiles of observed events.
Subtype Config Option Value Datadog Metric Submitted
_sum send_distribution_sums_as_monotonic false (default) gauge
    true monotonic_count
_count send_distribution_counts_as_monotonic false (default) gauge
    true monotonic_count
_quantile     gauge

Last update: August 28, 2023